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A Fourier-Chebyshev spectral method for the incompressible Navier-Stokes equations is 
described. It is applicable to a variety of problems including some with fluid properties which 
vary strongly both in the normal direction and in time. In this fully spectral algorithm, a 
preconditioned iterative technique is used for solving the implicit equations arising from semi- 
implicit treatment of pressure, mean advection, and vertical diffusion terms. The algorithm is 
tested by applying it to hydrodynamic stability problems in channel flow and in external 
boundary layers with both constant and variable viscosity. 0 1985 Academic PESS, IIIC 

1. INTRODUCTION 

Fourier-Chebyshev spectral methods have been employed in a number of 
numerical simulations of stability and transition in 3-dimensional wall-bounded 
shear flows. Specific algorithms have been developed for straight channels [l, 2, 31, 
curved channels [4], the parallel boundary layer [S], cylindrical Couette flow [6], 
and pipe flow [S]. In all of these methods Chebyshev expansions are employed in 
the direction normal to the walls and Fourier methods are used in the remaining 
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two directions. Hence these methods are applicable whenever periodic boundary 
conditions are appropriate in two directions. 

These methods usually handle the pressure and vertical diffusion terms implicitly, 
the pressure term so that the incompressibility condition is enforced and the vertical 
diffusion term in order to relax the diffusive time-step limitation. (The only excep- 
tion is the method [4] which eliminates the pressure by a clever choice of 
divergence-free velocity expansion functions.) Algorithms which employ time- 
splitting [l, 51 can achieve a relaxation of the advective time-step limit by a semi- 
implicit treatment of the streamwise advection. These implicit equations are solve 
by a direct method for which the efficiency depends upon simple mean velocity 
profiles and constant viscosity. However, there are situations in which time-splitting 
errors are a serious problem [S]. 

If the spectral discretization in the normal direction is replaced with a finite dif- 
ference method, then the direct solution of the implicit equations can be performed 
efficiently for mean flow profiles and viscosities with an arbitrary dependence u 
both the normal coordinate and time. Such Fourier-finite difference codes have 
been utilized both for channel flow [7] and for the parallel boundary layer Cg]. 
The price for this extra flexibility, however, is greatly reduced accuracy in the nor- 
mal direction. 

The contribution of the present paper is the description of a Fourier-Chebyshev 
algorithm for wall-bounded shear flows which combines the accuracy and efficiency 
of a fully spectral scheme with the flexibility of a Fourier-finite difference method. 
The key feature of this algorithm is a preconditioned iterative technique for solving 
the implicit equations arising from the semi-implicit treatment of the pressure, mean 
flow, and vertical diffusion terms. This algorithm is applicable to most of the cases 
described above-channel flow, parallel boundary layers, curved channel flow, and 
cylindrical Couette flow. Relatively minor modifications are required to treat the 
different cases. Illustrations-will be provided here for straight channel flow and for 
parallel boundary layer flow with constant and variable viscosity. The discussion 
will be restricted to 2-dimensional flow. The addition of a second periodic direction 
is straightforward. 

2. DISCRETIZED NAVIER-STOKES EQUATIONS FOR CHANNEL FLOW 

The rotation form of the 2-dimensional incompressible Navier-Stokes equations 
is 
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where the variable P denotes the total pressure and subscripts denote partial 
derivatives. The viscosity ,u is presumed to depend upon y and t only and the den- 
sity is taken to be unity. Periodic boundary conditions in x and no-slip boundary 
conditions at y = &l are assumed. 

The spatial discretization of Eq. (2.1)-(2.3) employs spectral collocation. The 
collocation points are 

x,= jL,/K j=O, l,..., K- 1, (2.4) 

m = 0, l,..., N, (2.5) 

where L, is the periodicity length in the streamwise direction, and K and N are the 
number of intervals in the x and y directions, respectively. The dependent variables 
have Fourier-Chebyshev series of the form 

K/2--1 N 

u(x, y, t) = C C u,,(t) e2aikx'LrTn(y), (2.6) 
k= -K/2 n=D 

where T, is the Chebyshev polynomial of degree n. In the spectral collocation 
method, spatial derivatives of u are obtained by differentiating the series expansion 
coefficients ukn(t) determined by discrete Fourier and Chebyshev transforms of the 
grid point values of u. The details of this procedure can be found in [9, lo]. In the 
temporal discretization, the pressure gradient term and the incompressibility con- 
straint are best handled implicitly. So, too, are the vertical diffusion terms because 
of the line mesh-spacing near the wall. The variable viscosity prevents the standard 
Poisson equation for the pressure from decoupling from the velocities in the dif- 
fusion term. A simple time discretization uses Crank-Nicholson on the implicit 
terms and second-order Adams-Bashforth on the remainder. After a discrete 
Fourier transform in x, the following set of ordinary differential equations and 
boundary conditions result 

(2.7) 

+3;,+’ +L1Y-l+~~+l=d”+~(3ti;-~-l)-eb+BO,, (2.8) 

and 

-&an+l y -jj”+l= 0, (2.9) 

q-l)=ti(+l)=O, 

O(-l)=O(+l)=O, 

where f = 2nkjL,, j3 = pAt/2, & = (Atf2) P, i= 0, and hats denote Fourier 
transformed variables in wavenumber space. The wavenumber is denoted by L and 
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the dependence of Zz, I?, and & upon R has been suppressed. The superscript n 
represents the time level. H, and H,, which contain the terms treated explicitly, are 
given by 

H, = -u(u, - u,) + (wx), + ~~u.v - p’xl,,, (2.11) 

H, = - 40, - uy) + (~-.x)x + yvuy. (2.12) 

The last term in Eq. (2.11) is the mean streamwise pressure gradient which drives 
the channel flow. All of these derivatives are evaluated by spectral collocation” A 
semi-implicit treament of the mean streamwise advection term is easily incor- 
porated. For example, the left-hand side of Eq. (2.7) has the additive term 

At 
i/Z--- uoP+ ‘; 

2 

in addition, ZQ,U, appears in Eq. (2.11). Here, ZQ, is the mean velocity. 
For each wavenumber &, the system of Eqs. (2.7)-(2.9) can be written, after a 

Chebyshev discretization in y, as 

LU=F, (2.13) 

where U = (tin+ ‘, V+ I, @+ ‘) and F is the known right-hand side. The matrix L is 
a full M x M matrix where Mr3N. A direct solution of (2.13) by Gauss elimination 
methods would require O(M2) storage and O(M3) arithmetic operations. An 
iterative solution, on the other hand requires only O(M) storage and O(MlogM) 
operations per iteration. The description of an effective iterative scheme will be 
provided in the next section. The use of the variable D in place of P puts L into a 
nearly self-adjoint form. 

At this point some remarks pertinent to our selection of this scheme are in order. 
Our goal was to develop a single, fully spectral algorithm which is applicable to a 
broad class of problems. Many interesting phenomena involve a strong variation of 
the viscosity, the mean advection, and/or the geometric terms in the direction nor- 
mal to the wall (or walls) and possibly also in time. (A number of 3-dimensional 
calculations employing the present algorithm on such problems are in progress and 
will be reported elsewhere.) In many of these problems semi-implicit treatment of 
the normal diffusion and/or the mean streamwise advection are desirable. The 
observations of Marcus [6] about the pitfalls of the time-splitting in some 
problems is a strong argument in favor of an unsplit method for a general purpose 
algorithm. A Chebyshev z method in the normal direction is ruled out in favor of 
Chebyshev collocation in all but the simplest cases. The variable viscosity and mean 
advection prevent the velocity and pressure equations from decoupling as in the 
influence matrix methods [3, 61. The matrix diagonalization technique for solving 
Eq. (2.13) is not practical because the matrix L may depend upon time. These con- 
siderations have led us to develop an iterative technique for solving the collocation 
equations. 
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3. SPECTRAL SOLUTION WITH FINITE DIFFERENCE PRECONDITIONING 

The key to the efficiency of an iterative method for the solution of Eq. (2.13) is 
the use of an effective preconditioning matrix so that the number of iterations is 
small. The reason is that the condition number of the matrix L is large. Con- 
sequently, standard iterative techniques would be slow. But let H be some precon- 
ditioning matrix for L, i.e., the iterative scheme is, in effect, applied to the equation 

H-‘LU= H-IF. 

The desirable properties of the preconditioning matrix are that the condition num- 
ber of H-‘L be small and that equations such as 

HU=G 

can be solved ‘cheaply for U (relative to the evaluation of LU). The first property 
implies that only a small number of iterations are required and the second property 
implies that a single preconditioned iteration costs roughly the same as a single 
unpreconditioned iteration. We base our choice of H on Orszag’s suggestion [ 111 
that a finite difference approximation to the differential equation be used. The 
interesting physical problems have high Reynolds numbers, i.e., low viscosity. Thus, 
the first derivative terms in Eqs. (2.7)-(2.9) predominate. Therefore, their effective 
preconditioning is crucial. 

To illustrate the difficulty with first derivative terms and to assess various 
remedies we consider the model scalar problem 

%T=f (3.1) 

on [0,2n] with periodic boundary conditions. The appropriate spectral method 
uses Fourier collocation. The eigenfunctions of the discrete spectral operator L and 
of the finite difference operator H are the exponentials 

where k is the wavenumber and x, is a Fourier collocation point as given by Eq. 
(2.4). Four possibilities for the finite difference operator are considered here: central 
differences, central differences with a high mode cutoff, one-sided differences, and 
the use of a staggered mesh. The effect of the staggered grid is modelled by 
evaluating the spectral residual at the points xJ+ 1,2 = 27c(j+ 4)/N rather than at the 
points xj = 2nj/N. The eigenvalues of these preconditioned matrices, H-‘L, for the 
model scalar problem are given in Table I for all four possibilities. The term kAx is 
the product of the wavenumber k and the grid spacing Ax. It falls in the range 
]kAxl < X. The eigenvalues for the centered differences kdxlsin kdx, are unbounded 
as IkAxj -+ 7~. Thus, pure central difference preconditioning yields a large condition 
number for H-lL. Orszag [ll] noted that truncating the high modes limit the 
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eigenvalues. Table I indicates that this does produce a bounded spectrum; the price 
is that some high wavenumber information is lost. Another cure is to use one-sided 
(forward or backward) differences for the first derivative terms. For the model 
problem, it results in bounded but complex eigenvalues with real parts tending to 
zero. Many iterative schemes perform badly on such problems. For the staggere 
mesh the eigenvalues of the preconditioned matrix for the model problem remain 
bounded and real, with no loss of high wavenumber information. 

These model problem results led us to consider a staggered mesh for the 
Navier-Stokes equations. The staggered mesh which is appropriate for the 
Fourier-Chebyshev discretization is staggered only in the y direction. The velocities 
are defined at the cell faces y,, as given by Eq. (2.5) and the pressure is defined at 
the cell centers 

Ym - l/2 = cm (4m - %W> m = l,..., N. (3.2) 

The momentum equations are enforced at the faces, whereas the continuity 
equations are enforced at the centers. The velocity boundary conditions are enfor- 
ced at the two walls. Note that there is no need for an artificial pressure boundary 
condition at the walls. 

The staggered mesh assigns one less vertical degree of freedom to the pressure 
than to the velocities. This is common practice in finite element techniques for the 
Navier-Stokes equations (see, e.g., [12]). Huberson and Morchoisne [13] have 
recently proposed a filtering procedure for spectral solutions of the incompressible 
Navier-Stokes equations on a non-staggered mesh. It has the effect of removing one 
vertical degree of freedom from the pressure. 

Let us now examine some of the details involved in employing a staggered mesh 
for Eqs. (2.7)-(2.9). Focus first on the spectral evalutions of the various terms. The 

TABLE I 

Preconditioned Eigenvalues for One-Dimensional 
First Derivative Model Problem 

Preconditioning Eigenvalues 

Central differences 
kAx 

sin (kds) 

High mode cutoff 

One-sided differences 

Staggered grid 

kAx 
sin(kAs) lkAxl< W33 

\O C-243) < lkdxj < ?I 

e - rWx,l) kAx/2 
SiIl((kAX)/2) 

(kAx)/2 
sin((kdx)/2) 
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explicit terms, denoted by H, and H,, are evaluated in a straightforward manner 
since they are required at the faces and involve only the velocities. The same holds 
for the remaining velocity terms in the momentum equations. The only com- 
plication here is the two terms involving the pressure. From the values of Q at the 
centers, trigonometric interpolation can be used to obtain Q at the faces. First, use 
the center values to obtain the Chebyshev coefficients 

B,=$ f P(y,-1,2)cos N nn(m - 4) m 
m=l 

for 12 = 0, l,..., N- 1, where the dependence upon t? and t has been suppressed. Then 
set Q,, = 0 and compute the values of Q at the faces 

m = 0, l,..., N. (3.4) 

Both of these sums may be computed by fast cosine transforms. This takes care of 
the pressure term in Eq. (2.7). The Q, term in Eq.(2.8) may be evaluated from the 
values of Q at the faces in a standard fashion. For the continuity equation one first 
evaluates 

at the cell faces in the standard manner and then interpolates this result to the cell 
centers, via 

Pn=& ; E,‘F(y,)cos~ 
n m=O 

(3.5) 

for II = 0, l,..., N where 

c, = 2, n=OorN 

= 1, l<n<N-1, (3.6) 

and 

The finite difference operator H pertains only to the left-hand side of Eqs. 
(2.7)-(2.9). The second derivative of the velocities is evaluated by 3-point centered 
differences of the values at the faces, using the formula appropriate for the non- 
uniform grid, e.g., 

A 
2 Zi,+,-a, fi,-z2zi,-, 

%Y 
m=Ym+l I -YYm-1 Ym+1-YYm -ym-YY,-1 . I 
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The pressure term in the u momentum equation is approximated by a linear 
average of the adjacent cell-centered pressure values. The vertical pressure gradient 
term in the u momentum equation is approximated by 2-point differences of the 
adjacent cell-centered pressure values. The streamwise velocity in the continuity 
equation is taken as the linear average of the velocity values at adjacent cell faces 
and the vertical derivative of 0 uses 2-point differences of the adjacent cell faces 
values. Order the unknowns as 

and order the equations as 
. . 

continuity at y1,2 
v momentum at y: 
u momentum at yi 

continuity at y,- 3,2 
v momentum at yN- 1 
u momentum at yN- 1 

u BC at yN 
v BC at JJ,,, 
continuity at YN _ 1 jz. 

This requires the velocity boundary conditions at y,, to be absorbed into the matrix. 
This ordering produces a block tridiagonal structure for H that can evidently be 
solved without pivoting within the diagonal block. (We have no proof for this 
claim, but we have made numerous checks. In all cases the solution wi 
pivoting produced results that agreed with solutions with pivoting to at least 
digits.) 

For fi= 0 the structure is even simpler. The velocity D is constant in y, the 
velocity li satisfies a tridiagonal equation, and the pressure 0 satisfies a bidiagonal 
equation. The latter is solved by setting &yl,J = 0 and then solving for each suc- 
cessive value of pressure. This particular choice of O(Y~,~) is arbitrary an 
corresponds to specifying the mean level of pressure. 

We have computed eigenvalues of H-IL not only for the staggered grid method 
but also for the same three alternatives that were discussed for the model problem. 
In these cases the pressure is defined at the cell faces and the continuity equation is 
enforced at the cell faces. This version requires numerical boundary conditions for 
the pressure at the walls. The continuity equation and the vertical momentum 
equation yield 

P,= -iE(pl2),. 



72 MALIK, ZANG, AND HUSSAINI 

The finite difference approximation uses one-sided differences and the matrix H is 
still block tridiagonal. 

The eigenvalues of the preconditioned matrix H-‘L for the Navier-Stokes 
equations are displayed in Figs. 1 and 2 for two wavenumbers and for four different 
discretizations of the first derivative terms. 

The results for h?= 1 are particularly interesting. When central differences for the 
first derivative terms are used, there are several complex eigenvalues with large real 
parts. The remaining eigenvalues are real with 1.0 < 1~4.5. As N increases, both 
the real and imaginary parts of the eigenvalues grow. (The largest eigenvalues for 
N = 24 and 32 are 12.3 + i 4.5 and 16.5 + i 6.4, respectively.) When the upper one- 

CENTRflL DIFFERENCES 

HIGH MODE CUT-OFF 

RERL 

ONE-SIDED DIFFERENCES 

STFlGGERED GRID 

FIG. 1. A plot of f= 1 channel flow eigenvalues of the preconditioned matrix H-IL for four first 
derivative treatments. In this case p -‘=7500, CFL=O.l, N=16, and K=32. 
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CENTRRL DIFFERENCES 

HIGH MCDE CUT-OFF 

ONE-SIDED DIFFERENCES 

STPGGERED GRID 

FIG. 2. A plot of k= 10 channel flow eigenvalues of the preconditioned matrix H-IL for four first 
derivative treatments In this case p -'=7500, CFL=O.l, N=16, K=32. 

third of the Chebyshev modes are cut off in the first derivative representation the 
spectrum is apparently bounded from above. However, there are now a number of 
complex eigenvalues with small real parts. One-sided tirst differences yield mainly 
complex eigenvalues including some with very small positive real parts. When the 
mesh is staggered, all the eigenvalues for fi= 1 lie close to the real axis between 1 
and n/2 z 1.57. 

The eigenvalue spectra are only slightly different at higher wavenumbers, as 
illustrated in Fig. 2 for fi= 10. Although there are some complex eigenvalues for the 
staggered mesh, they are reasonably well confined. Similar eigenvalue calculations 
have been performed for the staggered grid algorithm for N= 24 and N= 32. The 
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real parts are still confined between 1 and 7r/2 and the magnitudes of the imaginary 
parts decrease as N increases. 

Note that the model problem estimates the eigenvalue trends surprisingly well 
considering that it is just a scalar equation, has only first derivative terms, and uses 
Fourier series rather than Chebyshev polynomials. 

The preceding results indicate that the staggered grid leads to the most effective 
treatment of the first derivative terms. The condition number of the preconditioned 
system is reasonably small and full resolution is retained. However, the iterative 
scheme used for solving Eqs. (2.7)-(2.9) must be capable of dealing with the com- 
plex eigenvalues. Two types of iterative schemes are feasible. Chebyshev iteration 
[14] will converge because the real parts of the eigenvalues are greater than 1. 
However, this method contains parameters that depend upon the location of the 
eigenvalues in the complex plane. Alternatively, a parameter-free variational 
method [ 151 such as the minimum residual (MR) method will work provided that 
the Hermitian part of LH-’ is positive definite. Provided that the pressure term 
and the continuity equation are divided by 5 for fi# 0, this condition is satisfied for 
all the cases discussed in this paper. 

The preconditioned version of MR for Eq. (2.13) involves making an initial guess 
U“, computing the initial residual 

R’=F-L@, (3.8) 

solving 

HP = R”, 
(3.9) 

and then iterating according to 

(3.10) 

u’+l= u’+u,z[ (3.11) 

R’+‘=R’-a,@ (3.12) 
Hz”+’ =R’+’ (3.13) 

until convergence. The parameter a, in Eq. (3.10) is chosen so that the residual in 
Eq. (3.12) is as small as possible consistent with the prescription (3.11). Represen- 
tative convergence histories for the MR method are shown in Fig. 3 where the L, 
norm of the residual for fi= 1 is plotted against number of iterations for N= 16, 32, 
and 64. In this case, K= 4. At a Reynolds number of 7500, each iteration is found 
to reduce the residual by almost an order of magnitude and thee is a trend of faster 
convergence with increasing N which may be partly attributed to the higher 
resolution. In a fully nonlinear calculation, it is important that the convergence for 
the higher modes should also be fast. A comparison of the convergence histories for 
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k= 1, 5, IO, and 15 is made in Fig. 4. This calculation was done with N= K = 32. 
While the convergence tends to slow down at higher modes, the residue still 
decreases by a factor of 3 4 after each iteration. 

The physical results to be presented in Fig. 6 and Table III become intensive 
when the I’, norm is smaller than 10e6. 

4. EVOLUTION or; SMALL DISTURBANCES IN CHANNEL FLOW 

In order to test the algorithm proposed for Navier-Stokes equations, we study 
the problem of the evolution of small disturbances in channel flow. This problem 
has been studied extensively using the Orr Sommerfeld equation. When the 
amplitude of the disturbances imposed upon the mean (time independent) channel 
flow u(y) = (1 - y’) is small, then the numerical solution of the Navier-Stokes 
equation should be the same as that implied by the Orr-Sommerfeld solution. This 
linear solution has the form 

u(x,y,t)=(l-~y2)+~Re{~,.(y)ei’““~~””~, (4.1) 

ti(x, y, r)= --c Rejir~(y)e”““-““)}, (4.2) 

where $ is the cigenfunction normalized to a maximum value of 1, o is the complex 
frequency (with the largest imaginary part), x is the prescribed wavenumber, and E 
is the perturbation amplitude. 

The perturbation flow energy E(t) is 

E(t)= j”Adxi’ {[U(X,L.:f)-(l-~2)]2+1;2(x,L.:f)}dr:, (4.3) 
0 I 

.3 N I I I 

T/T3 
FIG. 5. Computed perturbation energy ratio for channel flow problem (p ’ = 7500). A Fourier spec- 

tral method in x and a second-order fmite difference method in y are used. Results are shown for a 4. 

point grid in x and for various grids in y. The solid line is the correct result. 
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FIG. 6. Computed perturbation energy ratio for channel flow problem (p-’ = 7500). A Fourier spcc- 
rral method in x and a Chebyshcv spectral method in 4’ are used. Results are shown for a 4-point grid in 
Y and for various grids in x. ‘The solid line is the correct result. 

where I-, = 2x/a. .Choosc initial conditions from Eqs. (4.1) and (4.2) with z = 0 and 
let E0 = E(O). For small amplitudes E(t)/&, = Y”“,‘. 

The particular problem chosen for study had p = (7500). ’ and r = 1. The only 
unstable mode has 0) = 0.24989154 + i 0.00223498. The amplitude parameter was 
6 = 0.0001. Two different discretizations in y were used: (1) Chebyshev collocation 

TABLE II 

(‘hannel Fourier-Finite Difference Convergence 

I Period 

.Y E,lh talc 

I6 0.3 1369055 
32 0.59348926 
64 0.93539768 

128 1.06837752 
256 I.10598936 

2 Periods 

‘2’ ~,LM,,, 

16 0.45883275 
32 0.26725477 
64 0.81641093 

128 1.12221673 
256 1.21820807 

--0.X0526006 
-0.52546165 
-0.18355323 
-0.05057339 
-0.01296155 

-0.79331x39 
--0.95479637 
-0.43564021 
-0.12983441 
-0.03384307 
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and (2) finite differences. Both methods used a Fourier collocation method in x. 
The Fourier-finite difference method used a staggered mesh, with the cell centers 
given by Eq. (3.2) and the cell faces located midway between the neighboring cell 
centers. This method is just that of Moin and Kim [7], applied to a direct 
simulation. Only four collocation points were used in the x direction. For this 
basically linear test problem, the x direction has essentially perfect resolution. ‘I’he 
time step was small enough so that the vertical discretization errors were 
predominant in all but the most highly resolved cases. 

The basic comparison of the vertical discretizations is provided in Figs. 5 and 6, 
where the natural logarithm of the perturbation energy ratio is plotted. The solid 
line in the figures represents the linear stability result. The finite difference solution 
is plotted in Fig. 5 for several vertical grids. Even the N = 256 results are 
appreciably in error. 

The Fourier-Chebyshev results arc presented in Fig. 6. The results for the N = 32 
grid are already in excellent agreement with the linear theory results. The numerical 
results for N = 16 are wildly inaccurate. This is in contrast with the linitc difference 
calculations where In E/E, at least varies linearly with the time for various grids. 
This behaviour is typical of spectral methods in general: if the resolution is inade- 
quate, say worse than 20%: then the spectral results are inferior to finite difference 
results; however, once the 10% accuracy level is achieved, spectral results become 
dramatically superior. 

In the above calculations, all runs were terminated at t/to = 2, where f0 is the time 
required for the wave to propagate through the streamwise computational domain. 
In this case, t,= 25.1438. The calculated energy ratio and its error at one and two 
periods are represented in Tables II and III for the finite difference and the 
Chebyshev methods, respectively. The convergence of the finite difference method is 

I Period 

TABLE III 

Channel I-‘ourier-Chcbyshev Convergence 

N E,/&l& E,l~oI error 
- ..- ..- - -. -.-. - 

16 1.17188803 0.05293712 
32 1.11912239 0.00017148 
64 I I 1896735 0.00001644 

2 Period7 

N E,/EoI ca,c .$/&I wror 
_. .~ _ ..~. 

16 2.07329163 0.82124050 
32 1.25291992 0.00086879 
64 1.25214542 0.00009429 
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quadratic. The convergence of the Chebyshev method is dramatic: the N = 32 spec- 
tral results are far better than N = 256 finite difference results (and took less CPU 
time). The error for the N = 64 Chebyshcv case is dominated by time discretization 
and nonlinear effects. 

The spectral results were all obtained with a time step corresponding to a mean 
streamwisc CFL number of 0.025 and with an explicit treatment of advection. Such 
a small time step is necessary for accuracy purposes. Stability problems over two 
periods only arise for CFL numbers above 0.30. The advantage of the capability of 
the algorithm to treat the mean advection implicitly arises in calculations with 
higher spatial resolution. An example is provided by calculations for this same test 
problem using 16 Fourier modes rather than 4. The semi-implicit advection version 
of the algorithm is stable for CFL numbers as large as 1. However, the accuracy 
suffers for such large time steps. 

5. DWRETIZATION FOR EXTERNAL BOUNDARY LAYERS (06ydq1-) 

This numerical method may also be applied to a model of the external boundary 
layer. In order to use periodic boundary conditions in the streamwise direction, one 
must make the parallel flow assumption, i.e.? fix on some reference location in a 
spatially growing boundary layer and use the corresponding mean velocity profile 
at all X. One must then set the mean vertical velocity to zero and make a minor 
adjustment to the mean streamwise pressure gradient to achieve parallel flow. 

A stretching transformation can be applied in the (unbounded) vertical direction. 
Let 

l+< 
y=yq* (5.1) 

where y is the physical vertical coordinate, c is the computational coordinate and a 
and h are constants. Let q, be the upper boundary in the physical plane and set 

h=l+2”. 
‘?lr 

(5.2) 

Then for any choice of the scaling parameter a, the computational coordinate <, 
falls within the standard Chebyshev interval [ - 1, I]. Derivatives in the vertical 
direction are evaluated by multiplying the Chebyshev collocation derivative in < by 
the Jacobian of the transformation, i.e., 

(5.3) 

The necessary modifications to Eqs. (2.7)-(2.12) are straightforward. 
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K=l , CFL = .16, ETRINF ~10 

2 4 I 8 I I * 

1- 

> - 
E 50 8 

H 

-1 - 

K=5, CFL q .lO. ETRINF ~10 

2 

K = 10. CFL = .lO, ETRINF ~10 

K-5. CFL r .31 . E"411UF ~13 

l-----Y 

K=5, CFL q .10. ETRINF 120 

K=5, CFL q 1.0 v ETFlINF q lO 

FIG. 7. A plot of the eigenvalues of the preconditioned matrix JJ ‘L for an external boundary layer 
using the staggered grid. In this case, p - ’ = IXO, N = 16, and K = 32. Zcroth-order boundary conditions 
are imposed at qa. 
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A number of choices are available for the numerical boudary condition at 7 .L. 
The simplest is to require that the solution at y = 11~ correspond to the flow at 
infinity. This is accomplished by setting t at J* = ~1* for f = 0 equal to the free 
stream velocity and setting all other velocity components to zero. Another 
approximation was used by Fasel [ 161 in his finite difference calculations of the 
boundary layer: 

These two alternatives will be refcrrcd to below as the zeroth-order and first-order 
boundary conditions, respectively. 

The finite difference preconditioning matrix is straightforward. Both types of 
upper boundary conditions lead to a block tridiagonal structure for H (which does 
not appear to require pivoting). The eigcnvalucs for the preconditioned matrix arc 

ETAINF = 10 LTAINF = 10 
-.---7 ,oo _-.---. -..-. 7 -- _ 

e 3 

10-Z ii 1 

10‘ al. - 

I 

1; . 

.-..-._I. I_. 1, ! 

1 6 11 16 21 
%O. OF ITERATIONS 

r ‘1, 
10-4; i 

\ 

1 6 11 76 2? 
NO. OF ITERATIONS 

ETAINF :- 20 ETAINF =20 

,oo r -r -- y-7-- -- -7 r-- -7. ---- / 
\ 1 I 

I--.-.-.” L. .-. L--_ --. I-- ., 
6 11 16 21 1 6 11 16 21 

NO. OF ITERATIONS NO. OF ITERATIONS 

FIG. 8. Convergence history of the minimum residual method for the boundary layer prohlcm. 
Zeroth-order boundary conditions are used in the parts of the ligure on the left-hand side and lirst-order 
conditions in parts on the right-hand side. 
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1.6 

FIG. 9. Computed perturbation energy ratio for the boundary layer problem with constant viscosity 
(p ’ = 1500). A Fourier spectral method in x and a second-order finite ditfcrence method in y are used. 
Results arc shown for a Cpoint grid in x and various grids in y (N = 32 (0) 64 (1:). 128 (A ), 256 (h)). 
The solid line is the correct result. 

illustrated in Fig. 7. The grid has K = 32, N = 16, and the Reynolds number (p-l) is 
7500. The stretching parameter a (see Eq. (5.1)) is chosen such that about 55 % of 
the nodes lie in the region 0 < y 6 2 and the rest lie in 2 d y < nor:. Three different 
CFL numbers (0.01, 0.1, 1.0) are checked and the effect is found to be negligible. 
The eigenvalues do tend to become widely apart with increasing 9,. For fast con- 
vergence, therefore, one would like to impose the freestream boundary conditions at 
as small q, as possible. Representative convergence histories of the MR method for 
the boundary layer case are shown in Fig. 8. Boundary conditions are imposed at 
I], = 10 and 20. Both the zeroth- and first-order boundary conditions are used and 
the convergence is found to be significantly faster in the latter case. The physical 
results to be presented become insensitive when the L, norm is smaller than IO 6. 

FIG. 10. Computed perturbation energy ratio for the boundary layer problem. A Fourier spectral 
method in x and a Chebyshev spectral method in y are used. Results are shown for a Cpoint grid in x 
and various grids in y (N = 16 (0 ), 32 (0 ), 64 (A )). The solid line is the correct result. In this case, 
zeroth-order boundary conditions are imposed at naz = 20. 
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TABLE IV 

Boundary Layer Fourier-Finite Difference Convergence 

1 Period 

.v &/&I talc ~,;i~Ol,,,, 
-- -. _ - .- .- - -- -- - .- 

32 1.4144405 0.05899918 
64 I .2294246 -0.12601673 

!28 1.3213179 -0.03412346 
256 I .3469941 0.00844721 

3 E(i~“Lk 4 :E”I cir<>r 

32 4.4395339 2.6023 126 
64 1.5316562 - 0.29956505 

128 I .7459684 --0.091252X9 
256 1.8144658 0.02275544 

We now describe results of computations of the evolution of small disturbances 
in flat plate flow with no-slip boundary conditions at the solid wall. The initial con- 
ditions are the Orr-Sommerfeld solution imposed upon the Blasius profile. The ver- 
tical grid J is normalized with respect to the boundary layer displacement thickness. 

The particular problem chosen for study had p = (1500) ‘, x = 0.3, and (LI = 
0.10288548 + i 0.00249003. The zeroth-order boundary conditions were imposed at 
q ,. = 20, i.e., 20 displacement thicknesses. The amplitude parameter c is taken to be 

Boundary Layer Fourier Chebyshcv Convergence 

I Period 

.v 
-. 

I6 
32 
64 

E,:EoI C‘l,C 
-. - 

1.276093X 
1.3554140 
1.3554399 

E,;E,Ia,, 

1.3200385 
1.8376986 
1.8372536 

Ef.‘h,l errur 
.- .- - -_. 

- 0.07934649 
O.OWO2630 

-. o.mxH)4o 

4 ~~0 crn,r 
- 

--0.51718473 
0.00048ooo 
0.oOOO3501 
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TABLE VI 

Effect of rfw and Top Boundary Condition 

tfa= 10 VP=20 
---- -- 

N 0th order 1 st order 0th order 1st order 
- - _- - .- - - - -_ .- 

16 -0.21312422 0.16289710 -0.51718473 -.0.52723330 
32 -0.09173191 0.00023775 0.00048000 0.0002 1268 

TABLE VII 

Orr-Sommerfeld Solution for Water Boundary Layer 
with Wall Heat Transfer (z = 0.15, (p.,) ’ = lO,OCQ) 

fl,,iO, 0 10 
.- - ._.- --.- -- ----.- - -- - -- - 

1.1 0.02872049 + i O.OC020520 218.7701 
1.0 0.03386607 T i 0.00343206 185.5303 
0.9 0.03445962 + i 0.0 1259238 1 X2.3347 

TABLE VIII 

Navier-Stokes Solution for Water Boundary Layer with 
Wall Heat Transfer (qm = 20, N= 32, 1st order B.C.) 

I period 

~)“iO,, E,iEolc,,c E,iE” I wror 

1.1 1.0946078 0.00067076 
1.0 3.57205 16 0.00 127094 
0.9 99.374109 0.67521093 

2 Period5 

O./O,, ~;ih,,I WC WEoI error 

1.1 1.1972253 0.00052696 
1.0 12.757289 - 0.01134543 
0.9 9871.3827 129.91024 



SPECTRAL COLLOCATION FOR NAVIER-STOKES 85 

FIG. 11. Computed perturbation energy ratio for the boundary layer problem. A Fourier spectral 
method in x and a Chcbyshev spectral method m ): are used. Results are shown for a 4-point grid m .v 
and two different grids in y (Iv= 16 (S), 32 (7)). The solid line is the correct result. In this cast, first- 
order boundary conditions are imposed at qcO = 10. 

0.0001. Four Fourier spectral modes were used in the streamwise direction. All runs 
were terminated at t/f,, = 2, where t, is the time required for the wave to propagate 
through the streamwise grid. In this case t, = 61.0689. 

Results analogous to those provided earlier for channel flow are given in Figs. 9 
and 10 and Tables IV and V. The IV= 32 finite difference results are oscillatory in 
time as shown in Fig. 9. This caused the results presented in Table IV for one 
period to wrongly suggest that the error for N = 64 is higher than that for N = 32. 
The IV= 32 Chebyshev results are far more accurate than the N = 256 finite dif- 
ference results and required less CPU time. Some additional Fourier-Chebysev 
calculations were performed to assess the upper boundary conditions. The results 
are reported in Table VI in terms of the energy error after two periods. For 
9, = 10, first-order boundary conditions provide a significant improvement in 

FIG. 12. Variation of viscosity for a water boundary layer with and without wall heat transfer 
(fJ,=293”K) (0,<,‘0, =l.l (S), 1.0(0),0.9(/,)). 
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accuracy over the zeroth-order ones. At qco =20, however, the improvement is 
marginal. The results for first-order boundary conditions at qac = 10 are plotted in 
Fig. 11. Significant improvement for N = 16 can be noted in comparison with 
Fig. 10 where zeroth-order boundary conditions were imposed at q,c = 20. 

In order to test the variable viscosity capability of the numerical algorithm, we 
applied it to water boundary layers with wall heat transfer. The viscosity of water is 
a strong function of temperature, decreasing with increasing temperature. Thus, 
heating of water boundary layers has a stability effect. We used the empirical tem- 
perature-viscosity formula given in [ 173. 

An Orr-Sommerfeld equation for incompressible flow to include the effect of 
viscosity can be derived as in [18] by neglecting temperature perturbations. This 
equation has been solved to provide initial conditions for the NavierrStokes code 
which also neglects the temperature perturbation. The free stream temperature 0,: 
is assumed to be 293°K and three wall-to-freestream temperature ratios were 
examined: 0,/O,, = 1.1, 1.0, 0.9. The resulting viscosity distributions calculated are 
plotted in Fig. 12. The freestream Reynolds number (p,;)-’ = 10000 and a=O.l5. 
The Orr Sommerfeld eigenvalues and time periods (la) for the three cases arc given 
in Table VII. The Navier-Stokes solutions for the three temperature ratios are 
presented in Fig. 13. The solution has been obtained with first-order boundary con- 
ditions imposed at qrC; = 20 and using N = 32. In each case 500 time steps were used 
to reach t/t,, = 2. The solid line in each case represents the theoretical results. While 
the growth rates arc vastly different for the three cases, the calculated results are in 

toy-- - 71-1 

-2 L- I II 
0 .5 1 .o I .5 2.0 

T/To 

FIG. 13. Computed perturbation energy ratio [or a water boundary layer (p;’ = 10,000) using a 
Fourier-Chebyshcv spectral method. The results shown are for a 4-point grid in x and a 33-point grid in 
y. O,,‘O,. = 1.1 (O), 1.0 (I j), 0.9 (G ) pertain to wall heating, no heating, and wall cooling, respectively. 
The solid lines are the correct results. 
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FIG. 14. Computed perturbation energy for a water boundary layer (pi ’ == 10,000. cI,,W x = 1.1). The 
results are shown for various initial perturbation amplitudes to indicate the effect of nonlineanty and 
were computed by using an g-point grid in x and a 33-point grid in .v (I:=-0.0001 (. I), 0.01 ( ,YL ), 
0.03 (n), 0.05 (‘3 )). The solid line is the linear result. 

good agreement with the theory. The calculated energy ratios and errors are given 
in Table VIII. 

In Fig. 13, a strong stabilization effect may bc noted when the wall-to-frecstream 
temperature ratio OJH, is increased from 1 to 1.1 These calculations were perfor- 
med with I: = 0.0001 using four Fourier spectral modes in the streamwise direction. 
In order to study the effect of nonlinearity, we have recomputed the 0,JfI x: = 1.1 
case using eight Fourier spectral modes in the streamwise direction for E = 0.0001, 
0.01, 0.03, 0.05. The results arc prcsentcd in Fig. 14 along with the linear Orr--Som- 
merfeld solution. It can be seen that the energy rate increases with increasing per- 
turbation amplitude E. A thorough set of 2-dimensional and 3-dimensional finite 
amplitude results, produced by the latter two authors in collaboration with I>. 
Bushnell, will bc presented elsewhere. 

6. CONCIXDIX REMARKS 

A Fourier-Chebyshev spectral method for the solution of the incompressible 
Navier-Stokes equations has been presented. This fully spectral method is 
applicable to both the internal and external boundary layers with variable viscosity. 
The method uses Chebyshev polynomials in the vertical direction and Fourier spec- 
tral collocation in the horizontal direction. The continuity and momentum 
equations arc solved as a set of coupled equations without splitting. A staggered 
grid is employed in the vertical direction so that no numerical pressure boundary 
conditions arc needed. The resulting implicit equations arc solved by a precon- 
ditioned iterative technique. The algorithm has been subjected to extensive testing 
by applying it to problems in hydrodynamic stability in channel flow and external 
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boundary layers with constant and variable viscosity. The results obtained with 33 
Chebyshev polynomials are found to be more accurate and require less CPU time 
than when 257 finite difference grid points are used. 
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